Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 1): 128566, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056752

RESUMO

Conductive hydrogels have shown a great potential in the field of flexible electronic devices. However, conductive hydrogels prepare by traditional methods are difficult to combine high strength and toughness, which limits their application in various fields. In this study, a strategy for preparing conductive hydrogels with high strength and toughness by using the synergistic effect of biomineralization and salting-out was pioneered. In simple terms, by immersing the CaCl2 doped soy protein isolate/poly(vinyl alcohol)/dimethyl sulfoxide (SPI/PVA/DMSO) hydrogel in Na2CO3 and Na3Cit complex solution, the biomineralization aroused by Ca2+ and CO32-, and the salting-out effect of both NaCl and Na3Cit would enhance the mechanical properties of SPI/PVA/DMSO hydrogel. Meanwhile, the ionic conductivity of the hydrogel would also increase due the introduction of cation and anion. The mechanical and electrical properties of SPI/PVA/DMSO/CaCO3/Na3Cit hydrogels were significantly enhanced by the synergistic effect of biomineralization and salting-out. The optimum tensile strength, toughness, Young's modulus and ionic conductivity of the hydrogel were 1.4 ± 0.08 MPa, 0.51 ± 0.04 MPa and 1.46 ± 0.01 S/m, respectively. The SPI/PVA/DMSO/CaCO3/Na3Cit hydrogel was assembled into a strain sensor. The strain sensor had good sensitivity (GF = 3.18, strain in 20 %-500 %) and could be used to accurately detect various human movements.


Assuntos
Álcool de Polivinil , Proteínas de Soja , Humanos , Cloreto de Sódio , Biomineralização , Hidrogéis , Dimetil Sulfóxido , Etanol , Condutividade Elétrica , Cetonas , Poli A , Cloreto de Polivinila
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...